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Xiaodong Wang, Fernando Caŕdenas-Lizana, and Mark A. Keane*

Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland

ABSTRACT: We have taken a systematic approach to the clean
production of functionalized aromatic amines, adopting the
hydrogenation of o-chloronitrobenzene (o-CNB) to o-chloroani-
line (o-CAN) as a case study. We tested a laboratory-synthesized
Au/TiO2 catalyst against a commercial benchmark (Pd/C). Both
catalysts exhibited nanoscale (1−9 nm)-supported metal
particles (dTEM = 4.0 nm (Au) and 5.4 nm (Pd)). In batch
liquid phase operation, Pd/C was nonselective, generating aniline
and nitrobenzene as undesired byproducts, where elevated PH2

(5−12 atm) increased the rate and o-CAN selectivity (to 86%).
In contrast, Au/TiO2 promoted exclusive o-CAN production
regardless of PH2

but at a lower rate. Reaction exclusivity
extended to (ambient pressure) gas phase continuous processing
with 100% o-CAN yield and catalyst stability up to 140 h on-stream. A switch from batch to continuous operation was
accompanied by an increase in projected o-CAN production capacity (5 × 103 → 86 × 103 kgo‑CAN kgAu

−1 year−1). Water (as o-
CNB carrier) served as an additional source of reactive hydrogen to deliver an order of magnitude increase in the selective
hydrogenation rate (vs ethanol) and a production capacity of 14 × 105 kgo‑CAN kgAu

−1 year−1. Our ultimate catalytic process
explicitly addresses nine of the 12 green chemistry principles with an E-factor = 0.28.
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■ INTRODUCTION

Sustainability is a crucial issue facing the chemical sector, where
the application of catalysis to reduce energy requirements and
achieve high selectivities is key to the application of “green
chemistry”.1 Several metrics have emerged to quantify green
performance, notably the environmental factor (E-factor, kgwaste
kgproduct

−1) and derivatives (e.g., process mass intensity (PMI) =
E-factor + 1).2 E-factor values within the 1−5 range are
characteristic of highly optimized processes3 in the manufacture
of pharmaceuticals, dyes, and fine chemicals industries.4 The
attainment of a sustainable chemical process should draw on
the 12 principles of green chemistry,5−7 summarized in Table 1.
In this study, we have set out to develop a low energy, atom
efficient, continuous process for the production of function-
alized amines (used in the manufacture of agrochemicals,
pharmaceuticals, dyes, and pigments8), taking the hydro-
genation of o-chloronitrobenzene (o-CNB) to o-chloroaniline
(o-CAN) as a model reaction.
The conventional route to haloamines via reduction of the

corresponding nitro-compound by an Fe-promoted reaction in
acid media (Bećhamp process) delivers low product yields and
generates significant quantities of toxic Fe/FeO sludge waste9

with an associated E-factor = 15.10 To date, CNB hydro-
genation has focused on batch liquid phase operation using
pressurized (up to 40 atm) hydrogen.11,12 A range of volatile
organic solvents (methanol,13 ethanol,14 diethyl ether,13 and
toluene15) have been employed with serious implications in

terms of safety (flammability) and environmental impact (toxic
emissions). Incomplete mixing in batch reactors results in
significant mass/heat transfer gradients, leading to byproduct
formation with the requirement for separation/purification
stages to extract the target product.16 A switch to continuous
gas phase operation offers clear advantages in circumventing
“down time” between batches, while operation at atmospheric
H2 reduces safety risks in terms of gas leakage and explosion.17

In continuous operation, reactant/catalyst contact time can be
adjusted to tune selectivity.8 A number of catalytic metals (e.g.,
Pt, Ru, Ni)9 have been tested in CNB hydrogenation where
high selectivities to the target amine (up to 100%) have been
achieved over supported Au18 and Pd19 in the gas18 and
liquid18,19 phases. There is however a dearth of literature that
has compared catalytic action in both batch liquid and
continuous gas operation. In this work, we apply the green
chemistry principles as a roadmap to maximize process
efficiency in the hydrogenation of o-CNB to o-CAN over Au/
TiO2, taking Pd/C as a benchmark and employing the E-factor
as a measure of environmental performance.
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■ EXPERIMENTAL SECTION
Catalyst Preparation and Activation. The TiO2 support (P25,

Degussa) was used as received. The 0.1% w/w Au/TiO2 was prepared
by deposition−precipitation following the synthesis procedure
described in detail elsewhere.20 Urea (as basification agent) was
added (about 100-fold excess) to a HAuCl4 solution (5 × 10−4 M)
containing the TiO2 support, and the suspension was stirred and
heated to 353 K for 3 h. The pH progressively increased to reach
about 7 as a result of thermally induced urea decomposition. The solid
obtained was separated by centrifugation, washed with deionized water
(with centrifugation between each washing) until chlorine free
(confirmed by the AgNO3 test), and dried under He (45 cm3

min−1) at 373 K (2 K min−1) for 5 h. Prior to use in catalysis, the
sample (75 μm average diameter) was activated in 60 cm3 min−1 H2 at
2 K min−1 to 473 K. A commercial 10% w/w Pd/C catalyst (Aldrich)
activated at 573 K (10 K min−1) in H2 was tested as the benchmark.
After activation, the samples were passivated in 1% v/v O2/He at
ambient temperature for off-line characterization.
Catalyst Characterization. Metal (Au and Pd) loading was

determined by inductively coupled plasma-optical emission spectrom-
etry (ICP-OES, Vista-PRO, Varian, Inc.). Nitrogen adsorption−
desorption isotherms were obtained at 77 K on the automated
Micromeritics Gemini 2390 system. Specific surface areas (SSA) were
calculated using the standard BET method. Total pore volume was
obtained at a relative N2 pressure (P/P0) = 0.95; samples were
outgassed at 423 K for 1 h prior to analysis. Temperature-programmed
reduction (TPR) and H2 chemisorption were determined using the
CHEM-BET 3000 (Quantachrome) unit. The samples were heated in
17 cm3 min−1 5% v/v H2/N2 at 2−10 K min−1 to 473−573 K. The
effluent gas passed through a liquid N2 trap, and changes in H2

consumption were monitored by TCD with acquisition/manipulation
using the TPR Win software. The reduced samples were swept with 65
cm3 min−1 N2 for 1.5 h, cooled to reaction (423 K) or ambient (298
K) temperature, and subjected to H2 chemisorption (P = 1.5 × 10−4

atm) using pulse (10−50 μL) titration. SSA and H2 chemisorption
values were reproducible to within ±5%, and values quoted represent
the mean. Powder X-ray diffractograms were recorded on a Bruker/
Siemens D500 incident X-ray diffractometer using Cu Kα radiation;
samples were scanned (0.02° step−1) over the range of 20° ≤ 2θ ≤
85°. Metal particle morphology was determined by TEM analysis; a
JEOL JEM 2011 HRTEM unit operated at an accelerating voltage of
200 kV using Gatan DigitalMicrograph 3.4 was used for data analysis.
Samples were dispersed in acetone and deposited on a holey carbon/
Cu grid (300 Mesh). Surface area-weighted metal diameter (dTEM) was
calculated (a count of 200 Au and 580 Pd particles) from
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where ni is the number of particles of diameter di.
Catalytic Systems. Materials and Analytical Methods. Reactant

(o-CNB, Sigma-Aldrich, ≥98%) and solvent (ethanol, Sigma-Aldrich,
≥99%) were used as received. Gases (H2, He, O2, and N2) were
ultrahigh purity (99.999%, BOC). Product composition was
determined by capillary GC (PerkinElmer Auto System XL with
flame ionization detector) using a DB-1 capillary column (J&W
Scientific); carbon mass balance was complete to ±5%. Repeated
reactions delivered conversion/selectivity values reproducible to better
than ±5%.

Liquid Phase Batch Operation. Reactions (T = 423 K; PH2
= 5−12

atm; Ptotal = 13−20 atm) were conducted in a commercial semibatch

Table 1. Roadmap of Steps Considered in This Work To Implement Sustainable Hydrogenation of o-CNB (to o-CAN) (right)
According to the 12 Principles of Green Chemistry5,6 (left), Using the E-factor as the Guiding Metric.2

aE-factor extracted from ref 10 for industrial scale nitroarene reduction. bCalculated E-factor considering 90% recovery of ethanol or water
(solvent).7
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stirred stainless steel reactor (100 cm3 autoclave, Büchi) equipped with
a pressure-controlled H2 supply. Adopting the approach of Madon and
Boudart,21 the reaction operational window was established to ensure
minimal heat or mass transfer limitations. Hydrogen consumption
during reaction was monitored online with a press flow gas controller
(BPC-6002, Büchi) and a stainless steel six-blade disk turbine impeller
provided effective agitation (1800 rpm). A recirculator (HAAKE B-
N3) was used to control the reaction temperature to ±1 K. At the
beginning of each run, an 80 cm3 ethanolic solution (0.3 × 10−2 − 6.4
× 10−2 mol dm−3) of o-CNB was charged and flushed three times with
N2 under constant agitation. The catalyst was activated ex situ,
transferred to the reactor, and the temperature stabilized under gentle
stirring (about 300 rpm). Hydrogen was introduced, the system
pressurized to the final reaction pressure, and full agitation engaged
(time t = 0 for reaction). In a series of blank tests, reaction in the
absence of catalyst did not result in measurable conversion. The initial
molar o-CNB/metal (Au or Pd) = 250−3300. Noninvasive liquid
sampling via a syringe with in-line filters allowed controlled removal of
aliquots (≤0.5 cm3) from the reactor for analysis. Fractional
conversion of o-CNB (x) is defined as
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where subindex “0” refers to initial concentration. Initial o-CNB
consumption rate (r) was determined from a linear regression of the
temporal o-CNB concentration profiles at x < 0.25.22 Selectivity (%) to
target o-CAN (So‑CAN) is given by
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Continuous Gas Phase Operation. Reactions were carried out
under atmospheric pressure in a fixed bed vertical continuous flow

glass reactor (i.d. = 15 mm) at 423 K under conditions of negligible
heat/mass transport limitations. Isothermal conditions (±1 K) were
maintained by thoroughly mixing the catalyst with ground glass (75
μm). An ethanolic (or aqueous) o-CNB solution (F = 6 × 10−3 − 0.76
mmol h−1; molar metal to inlet o-CNB = 0.03 × 10−2 − 0.34 h) was
delivered, in a concurrent flow of H2 (GHSV = 2 × 104 h−1) via a
glass/Teflon airtight syringe and Teflon line using a microprocessor
controlled infusion pump (Model 100 kd Scientific) at a fixed
calibrated flow rate. In blank tests, passage of o-CNB in H2 through the
empty reactor did not result in detectable conversion. Fractional
hydrogenation (x) was obtained from
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where “in” and “out” refer to the inlet and outlet streams. Selectivity is
given by
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■ RESULTS AND DISCUSSION
Catalyst Characteristics. TPR (to 473 K) of the TiO2

support (profile not shown) did not result in any measurable
H2 consumption. This is consistent with the literature23 where
TiO2 reduction (in H2) required temperatures in excess of 773
K.24,25 Hydrogen consumption with a temperature maximum
(Tmax) at 373 K was recorded in the TPR of Au/TiO2 (Figure
1(A,I)). A single positive TPR peak has been reported
elsewhere for Au/TiO2 with Tmax at 378

26 and 383 K.27 The
H2 consumed (9.2 mmol gAu

−1) was measurably higher than
that (7.6 mmol gAu

−1) required for Au3+ → Au0 reduction,

Figure 1. (A) TPR profiles, (B) XRD patterns (TiO2−anatase (21−1272), ■; TiO2−rutile (21−1276), ●; Au (04−0784), △; Pd (05−0681), ▲),
and (C) representative TEM images with associated (inset) metal particle size distribution histograms for (I) Au/TiO2 and (II) Pd/C.
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suggesting partial (surface) reduction of TiO2 with the creation
of oxygen vacancies.28 This is significant as surface vacancies
formed during the reduction of Ni/TiO2 served to activate N
O for reaction.29 We accordingly adopted a reduction
temperature of 473 K for the activation of Au/TiO2 prior to
catalysis. The SSA of Au/TiO2 matched that of the starting
TiO2, but there was a measurable increase in pore volume
(Table 2) that has been observed previously.30

The XRD pattern (Figure 1(B,I)) for Au/TiO2 is
characterized by peaks at 2θ = 25.3°, 37.8°, and 48.1°
corresponding to the (101), (004), and (200) planes of
tetragonal anatase (JCPDS-ICDD 21-1272), while the peak at
27.4° is diagnostic of tetragonal rutile (JCPDS-ICDD 21-1276).
The anatase content from the XRD response was close to the
80% volume fraction reported for Degussa P25.31 There were
no strong signals detected for Au metal (principal peak at
38.1°), which may be due to the low Au loading (0.1% w/w)
and/or occurrence of a well-dispersed Au phase (<5 nm).32

The latter was confirmed by TEM, which revealed
pseudospherical Au particles in the size range 1−8 nm (Figure
1(C,I)) with a surface area-weighted mean diameter of 4.0 nm.

The formation of supported Au particles at the nanoscale (<10
nm) is critical for hydrogenation activity.18 It is established that
Au exhibits a higher barrier than other transition metals (Pt, Pd,
and Ni) for H2 dissociation due to the filled d-band, and
chemisorption proceeds at edge and corner sites associated
with smaller particles.33,34 We have demonstrated previously
that the specific rate of nitro-compound (nitrocyclohexane,28 p-
CNB,35 and m-dinitrobenzene (m-DNB)36) reduction in-
creased with decreasing mean Au size (from 9 to 3 nm).
Ambient temperature H2 chemisorption following TPR
delivered an appreciably lower uptake (20 μmol g−1) than
that (183 μmol g−1) recorded at reaction temperature (423 K,
Table 2), indicating that H2 adsorption on Au is an activated
process, as noted by Bus et al.34 and Lin and Vannice.37

Critical physicochemical characteristics for the Pd/C catalyst
are presented in Figure 1 and Table 2. The SSA (826 m2 g−1)
and pore volume (0.37 cm3 g−1) are close to those (875 m2 g−1;
0.47 cm3 g−1) reported elsewhere38 for activated carbon-
supported Pd. TPR analysis (to 573 K) generated a single
negative peak with Tmax = 373 K (Figure 1(A,II)) that can be
attributed to H2 generated from the thermal decomposition of
the β−Pd hydride. Zero valent Pd can absorb H2 at ambient
temperature39 to form a hydride where the H2 partial pressure
> 0.02 atm;40 a pressure of 0.05 atm was used in this study.
This hydride decomposes at 340−390 K22,41 with a H2 release
that is dependent on Pd size with an upper limit of 0.67 molH
molPd

−1 for bulk Pd,42 decreasing to about 0.05 molH molPd
−1

for a mean Pd size of about 2 nm.42 The value recorded in this
study (0.16 molH molPd

−1) suggests formation of Pd particles at
the nanoscale, as confirmed by TEM analysis (Figure 1(C,II))
with a size distribution in the 1−9 nm range and mean of 5.4
nm. The XRD pattern (Figure 1(B,II)) exhibits signals at 40.7°,
46.1°, 68.1°, and 82.1° that can be assigned to Pd (111), (200),
(220), and (311) planes, respectively. A Pd particle size of 6.1
nm was obtained by applying standard line broadening
analysis.43 Ambient temperature H2 chemisorption (1691
μmol g−1) far exceeded that measured for Au/TiO2 (Table

Table 2. Physicochemical Characteristics of Au/TiO2 and
Pd/C

Au/TiO2 Pd/C

TPR Tmax (K) 373 373a

SSA (m2 g−1) 48 (49)b 826
total pore volume (cm3 g−1) 0.13 (0.07)b 0.37
H2 chemisorption (μmol g−1) 20c/183d 1691c/637d

metal particle size range (nm) 1−8 1−9
average particle size (nm) 4.0e 5.4e/6.1f/4.7g

aNegative peak due to the decomposition of β-Pd hydride. bValue
refers to TiO2 (support). cMeasurements conducted at 298 K.
dMeasurements conducted at 423 K. eFrom TEM analysis (see eq 1).
fFrom XRD measurements. gFrom H2 chemisorption (at 298 K).

Table 3. Comparison of Batch Liquid (at different PH2
) vs Continuous Gas Phase Operation in Terms of Process Parameters

and Ultimate o-CAN Production Capacity over Pd/C and Au/TiO2

amolo‑CNB molmetal
−1 h−1. bTime required for reactor loading (t1), catalyst activation (t2), temperature/pressure stabilization (t3), unload/reload of

product/reactant solution (t4), and catalyst filtration-washing-reloading (t5).
ckgo‑CAN kgAu

−1 year−1

ACS Sustainable Chemistry & Engineering Research Article

dx.doi.org/10.1021/sc500544s | ACS Sustainable Chem. Eng. 2014, 2, 2781−27892784



2). Hydrogen adsorption on supported Pd is a valid means of
estimating Pd particle size,44 where the value (4.7 nm) obtained
(adopting a Pd/H adsorption stoichiometry = 1) is consistent
with that determined by TEM and/or XRD. Hydrogen
chemisorption on Pd/C was lower (637 μmol g−1) at the
reaction temperature but was still significantly greater than that
recorded for Au/TiO2. Our results are consistent with the work
of Greeley and Mavrikakis45 who demonstrated by DFT that
Au weakly binds hydrogen relative to Pd. The same authors
showed that hydrogen uptake on Pd is exothermic, which can
account for lower adsorption at increased temperature.
o-CNB Hydrogenation. In this work, we have set out to

systematically evaluate and tackle the major sustainability issues
associated with the production of o-CAN (from o-CNB) using
the 12 principles of green chemistry to minimize E-factor and
maximize productivity. We present the reaction systems
considered in this work in Table 1 wherein we identify the
associated drawbacks and steps taken to circumvent these
limitations.
First Approach to Optimisation: Batch Liquid Phase

Operation over Pd/C. In addition to the target o-CAN, a
range of byproducts have been identified in the literature for
the hydrogenation of o-CNB in gas9,46,47 and liquid9,15,48 phase
operation. Nitrobenzene (NB) and aniline (AN) are produced
via hydrodechlorination of o-CNB with further hydrogenation,
as observed over NiCoB49 and Pt/C.50 Hydrodeamination to
chlorobenzene has been reported for Pt/Al2O3,

51 while
benzene formation over Ru catalysts has been noted by Xiao

et al.9 Nitrosochloro- and (chlorophenyl)-hydroxylamine
intermediates can undergo side (condensation/hydrogenation)
reactions with o-CAN to generate toxic byproducts (dichlor-
oazobenzene, dichlorohydrazobenzene, and/or dichloroazox-
ybenzene), which have been isolated over Pt powders.48

Conventional synthesis of o-CAN by the Bećhamp process
involves stoichiometric reagents (iron and hydrochloric acid52)
and does not meet green chemistry principle #9 (Table 1). As a
first step (I in Tables 1 and 3), we have considered the catalytic
reaction in batch liquid phase, which is standard practice in the
pharmaceutical/chemical sector,53 taking Pd/C as a benchmark
catalyst. A representative (PH2

= 5 atm) o-CNB concentration

profile is shown in Figure 2(I,A), where complete conversion
was achieved after 1 h. Selectivity (Si) was time invariant with
the generation of o-CAN as principal product (So‑CAN = 79%),
AN as byproduct (SAN = 20%), and trace NB formation (SNB =
1%). An increase in pressure (to PH2

= 12 atm) served to

elevate the rate of o-CNB consumption with a measurable
increase in o-CAN selectivity at the expense of AN (Table 3).
As the same product distribution was obtained at all levels of
conversions, o-CAN and AN must be generated in a parallel
conversion of o-CNB rather than a stepwise hydrogenation/
hydrodechlorination. There is evidence in the literature
suggesting that selectivity in CNB hydrogenation is sensitive
to PH2

, where an increase in pressure (1−40 atm) favored CAN

formation over (titania54 and polymer50) supported Pt50 and
Pt−Au.54 This was explained on the basis of a zero order

Figure 2. (I) Batch liquid phase reaction: temporal variation of o-CNB concentration (Co‑CNB: ●) and product selectivity (Si: o-CAN, ○; AN, □; NB,
△) for the reaction over (A) Pd/C and (B) Au/TiO2. Reaction conditions: Co‑CNB,0/Pd molar ratio = 3300, Co‑CNB,0/Au molar ratio = 250, T = 423
K, PH2

= 5 atm. (II) Continuous gas phase reaction: (A) variation of o-CNB fractional conversion (x) with time on-stream for reaction over Au/TiO2

at n/F = 12 × 10−3 h (○) and 16 × 10−2 h (●). Inset: pseudo-first-order kinetic plot; (B) fractional conversion over Au/TiO2 for up to 140 h on-
stream (n/F = 8 × 10−2 h). Insets: (a) fractional conversion over Au/TiO2 for up to 95 h on-stream with a switch in n/F (from 8 × 10−2 h to 34 ×
10−2 h) between 3 and 17 h. Reaction conditions: T = 423 K, PH2

= 1 atm and (b) variation of hydrogenation rate (r) with water content (% v/v) in
the carrier (water and water + ethanol mixtures).
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dependence of hydrodechlorination (CAN → AN) on PH2
,

where an increase in PH2
only affected p-CNB → p-CAN.50

Batch reaction over Pd/C was accompanied by a lower E-factor
(10) relative to the Bećhamp process (15). Byproduct (AN and
NB) formation contravenes principles #1, 2, 10, and 11 (Table
1), and process sustainability requires minimization of
unwanted side reactions with enhanced atom efficiency,
circumventing separation/purification steps. This objective
was not achieved over the commercial Pd/C catalyst and was
the focus of further optimization.
Second Approach to Optimisation: Batch Liquid Phase

Operation over Au/TiO2. The performance of Au/TiO2 was
tested in the batch reactor under conditions employed for Pd/
C, and the results are presented in Figure 2(I,B) and Table 3.
Full o-CNB conversion over Au/TiO2 required an extended
reaction time (up to 30 h), and the rate was appreciably lower
(by a factor of more than 200 at PH2

= 5 atm) than recorded for
Pd/C. This can be ascribed to the lesser capacity of supported
Au (relative to Pd) to adsorb/dissociate H2, as demonstrated by
the chemisorption measurements (Table 2). Ide et al.55

reported lower (100−400 fold) hydrogenation rates for Au/C
relative to Pd/C in the liquid phase conversion of
crotonaldehyde and methyl vinyl ketone. However, Au/TiO2

delivered 100% selectivity to o-CAN, where an increase in H2

pressure elevated (selective) the hydrogenation rate to a greater
extent than observed for Pd/C (Table 3). We can attribute this
to a pressure-driven increase in the availability of surface
hydrogen on Au/TiO2 that enhanced the degree of hydro-
genation. Use of Au/TiO2 in batch mode lowered the E-factor
to 8, which is at the lower end of the range (5−50) in the fine
chemical sector.56 Moreover, the ultraselective response over
Au/TiO2 satisfies five (#1, 2, 9, 10, and 11) of the green
chemistry principles (Table 1). On the basis of this response,
Au/TiO2 was employed as catalyst for further process
optimization. Full selectivity to the target product at elevated
PH2

translates into a higher o-CAN production rate, but this is
offset by the energy required to operate the reactor (principle
#6), notwithstanding the safety concerns associated with
handling pressurized H2, particularly at a commercial scale
(principles #3 and #12). These drawbacks were tackled in the
next optimization step.
Third Approach to Optimisation: Continuous Gas Phase

Operation over Au/TiO2. A move from batch liquid to
continuous gas phase catalysis was made at the same reaction
temperature (423 K) but at ambient pressure, lowering energy
requirements and minimizing potential safety hazards. Con-
tinuous processing has been highlighted as crucial for
sustainable manufacture of fine chemicals and a primary area
for development by the Green Chemistry Institute (GCI),
American Chemical Society (ACS), and global pharmaceutical
corporations.53,57 The feed was vaporised and carried through a
fixed catalyst bed. This has the advantage of simultaneous
reactant delivery and product removal where the process was
operated at steady state. Representative temporal conversion
profiles (Figure 2(II,A)) establish invariant activity for up to 3 h
on-stream. We have previously established58 applicability of
pseudo-first-order kinetics according to

−
= ⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠x

n
F

ln
1

(1 )
k

(6)

where n/F (molar Au to inlet hourly o-CNB molar feed rate)
has the physical significance of contact time. The linear
relationship (between ln(1− x)−1 and n/F) shown in the inset
to Figure 2(II,A) confirms adherence to first-order behavior,
which allows determination of the rate constant (k). Catalyst
lifetime is crucial where overall process efficiency is governed
by both selectivity and stability.59 Catalyst deactivation in
−NO2 group reduction has been ascribed to carbon
deposition,60 deleterious effects due to water formation (as
byproduct),61 chlorine poisoning,58 and metal sintering.58

Catalyst testing was extended over prolonged (up to 140 h)
time on-stream where the results presented in Figure 2(II,B)
demonstrate maintenance of constant activity. As a further test,
contact time was increased (n/F from 0.08 to 0.34 h) during
the stability measurements with a corresponding increase in
conversion (to deliver 100% o-CAN yield) with a return to the
initial level on switching back to the starting conditions (inset
(a), Figure 2(II,B)). Reaction exclusivity in continuous gas
phase operation resulted in an equivalent E-factor (= 8) to that
obtained in liquid phase operation (Table 1). However,
continuous operation overcomes the drawback of unproductive
“down time” between batches, while operation of a fixed
catalyst bed in continuous mode circumvents catalyst loss
between batches, which was experimentally determined to be
5% per batch. This has a significant impact on productivity as
can be assessed from the entries in Table 3. A meaningful
comparison of both modes of operation should normalize o-
CAN generated with respect to total process time to give a
production capacity.62 Liquid phase reaction was run in time-
sequential steps (three recharges per week) with significant
intervals between batches due to reactor loading (t1), catalyst
activation (t2), temperature/pressure stabilization (t3), extrac-
tion of product/recharge with reactant (t4), and catalyst
filtration−washing−reloading (t5). Down time (t1 + t2 + t3) in
gas phase operation was limited due to combined (a)
continuous reactant supply and product removal and (b) facile
separation of catalyst from reactant/product. Productivities
were calculated on the basis of 7 working (24 h) days per week
where the estimated capacity (projected on an annual basis)
was significantly greater for continuous operation (Table 3).
The move from batch to continuous mode served to further
close the sustainability gap, addressing nine green chemistry
principles (Table 1) while increasing production capacity of the
target amine.

Fourth Approach to Optimisation: Use of Water as Carrier
in Continuous Gas Phase Operation over Au/TiO2. The
catalytic data presented to this point refer to reactions of
ethanolic o-CNB solutions. Green chemistry requires, where
possible, the use of “clean” solvents in tandem with milder
conditions. Water, as an environmentally benign solvent, is a
cleaner and inexpensive alternative, and the feasibility of
conducting reactions in water rather than organic solvents has
been a long-standing goal for synthetic chemists.63 It has been
demonstrated14,64 that polar properties of water impact
hydrogenation activity/selectivity in liquid phase reactions,
but the effect in gas phase operation (where water serves as a
carrier) has not been evaluated. Catalyst performance in gas
phase hydrogenation can be influenced by the carrier due to
competitive adsorption.65 Use of water and water/ethanol
mixtures was examined, and the results (inset (b), Figure
2(II,B) establish that rate increased markedly at higher water
content; full selectivity to o-CAN was again achieved. Ning et
al.14 have reported enhanced p-CNB reduction over Ru/SiO2
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using water as solvent in comparison with organic alcohols
(methanol to pentanol) in liquid phase reaction, which they
attributed to a facilitated desorption of the halo-amine product.
Maity et al.64 observed increased activity in liquid phase
hydrogenation of nitrobenzene over Pt/polymer in water
relative to methanol, which was ascribed to more favorable
formation of catalytic active sites in aqueous media. The
hydrogenation rate over supported Au is limited by the
available surface reactive hydrogen,46 and any additional supply
of hydrogen should promote reaction. Dissociative chemisorp-
tion of water on supported Au has been proposed under
conditions similar to those used in this study, which served to
increase activity in the water−gas shift reaction (WGSR)66−68

and gas phase hydrogenation of benzaldehyde.69 Shekhar et
al.67 have demonstrated that TiO2 as Au support contributes
directly to WGSR by activating water in the feed to generate
surface reactive hydrogen. The generation of surface hydrogen
(protons) from water dissociation is promoted by oxygen
vacancies on TiO2.

70 The abstracted protons can bond with
two-coordinate oxygen sites on the support to form bridging
hydroxyl groups that have been proposed as a source of atomic
hydrogen, active in hydrogenation.71 Theoretical calculations
have established that the dissociation energy of water on Au
sites is in the range 0.61−2.2 eV, which is of the same
magnitude as the dissociative adsorption of hydrogen on Au
(0.16−1.4 eV).72−74 Enhanced selective hydrogenation of the
aqueous o-CNB feed can then be ascribed to surface activation/
dissociation of water, generating reactive hydrogen that
contributes to −NO2 reduction. Utilization of water as carrier
resulted in further reduction in the E-Factor to 0.28 (Table 1),
characteristic of highly optimized chemical processes in
chemical/pharmaceutical production lines.3 This is step-
changing in fine chemical processes and is closer to the low
waste/product ratios achieved in oil refining.56 The increased
rate in water resulted in further appreciable enhancement of o-
CAN productivity (Table 3) and opens new opportunities for
cleaner high-throughput production of functionalized aromatic
amines.
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